
3) |x +1|>3;|х-0,3|<4


Ответы на вопрос

Відповідь: x ∈ (-∞; -4) ∪ (2; +∞).
|x - 0,3| < 4
-4 < x - 0,3 < 4
-3,7 < x < 4,3



To solve the inequalities, we'll consider them one by one:
- |x + 1| > 3
The absolute value of a number is always non-negative, meaning it is either positive or zero. For the expression |x + 1| to be greater than 3, it means that the value inside the absolute value brackets must be either greater than 3 or less than -3.
So we have two cases to consider:
Case 1: x + 1 > 3 Solving for x: x > 3 - 1 x > 2
Case 2: -(x + 1) > 3 Solving for x: x + 1 < -3 x < -3 - 1 x < -4
Now we have the range of x values for which |x + 1| > 3: x < -4 or x > 2.
- |x - 0.3| < 4
Similar to the previous inequality, we'll consider two cases:
Case 1: x - 0.3 < 4 Solving for x: x < 4 + 0.3 x < 4.3
Case 2: -(x - 0.3) < 4 Solving for x: x - 0.3 > -4 x > -4 + 0.3 x > -3.7
Now we have the range of x values for which |x - 0.3| < 4: -3.7 < x < 4.3.
Combining the results from both inequalities, we find the intersection of the two solution sets:
-3.7 < x < -4 or x > 2
However, it's important to note that there is no intersection between the two solution sets. Therefore, the final solution is:
-3.7 < x < -4 or x > 2


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili