
1017. Решите неравенства: 1) |9 – х| = 2;5) |x – 5| <11;6) |6 – x| > 7.ДАЮ 20 БАЛЛОВ


Ответы на вопрос




- |9 - x| = 2
To solve this inequality, we'll consider two cases: when the expression inside the absolute value is positive and when it is negative.
Case 1: 9 - x > 0 (positive) In this case, we have |9 - x| = 9 - x. Therefore, we can rewrite the equation as follows: 9 - x = 2
Solving for x: 9 - 2 = x 7 = x
So x = 7 is a solution.
Case 2: 9 - x < 0 (negative) In this case, we have |9 - x| = -(9 - x). Therefore, we can rewrite the equation as follows: -(9 - x) = 2
Solving for x: -9 + x = 2 x = 2 + 9 x = 11
So x = 11 is another solution.
Therefore, the solutions to the inequality |9 - x| = 2 are x = 7 and x = 11.
- |x - 5| < 11
To solve this inequality, we'll consider two cases: when the expression inside the absolute value is positive and when it is negative.
Case 1: x - 5 > 0 (positive) In this case, we have |x - 5| = x - 5. Therefore, we can rewrite the inequality as follows: x - 5 < 11
Solving for x: x < 11 + 5 x < 16
So x < 16 is a solution.
Case 2: x - 5 < 0 (negative) In this case, we have |x - 5| = -(x - 5). Therefore, we can rewrite the inequality as follows: -(x - 5) < 11
Solving for x:
- x + 5 < 11
- x < 11 - 5
- x < 6
Dividing both sides by -1 and flipping the inequality sign: x > -6
So x > -6 is another solution.
Therefore, the solutions to the inequality |x - 5| < 11 are x < 16 and x > -6.
- |6 - x| > 7
To solve this inequality, we'll consider two cases: when the expression inside the absolute value is positive and when it is negative.
Case 1: 6 - x > 0 (positive) In this case, we have |6 - x| = 6 - x. Therefore, we can rewrite the inequality as follows: 6 - x > 7
Solving for x: -x > 7 - 6 -x > 1
Multiplying both sides by -1 and flipping the inequality sign: x < -1
So x < -1 is a solution.
Case 2: 6 - x < 0 (negative) In this case, we have |6 - x| = -(6 - x). Therefore, we can rewrite the inequality as follows: -(6 - x) > 7
Solving for x: -x + 6 > 7 -x > 7 - 6 -x > 1
Multiplying both sides by -1 and flipping the inequality sign: x < -1
So x < -1 is another solution.
Therefore, the solution to the inequality |6 - x| > 7 is x < -1.
The solutions for the given inequalities are:
- x = 7, 11
- x < 16, x > -6
- x < -1


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili