Вопрос задан 14.07.2023 в 03:00. Предмет Математика. Спрашивает Сорокин Тимур.

{7-11х<9х-3(5х+7) и {6-х>2(1-4х)-3(1-3х)​

Смотреть ответ lanaerkin lanaerkin Ответ:345 567 Пошаговое объяснение:
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для начала, давайте решим первое неравенство:

7 - 11x < 9x - 3(5x + 7)

Раскроем скобки:

7 - 11x < 9x - 15x - 21

Сгруппируем переменные x:

7 - 11x < -6x - 21

Добавим 11x к обеим сторонам, чтобы избавиться от отрицательного коэффициента x:

7 < 5x - 21

Теперь добавим 21 к обеим сторонам:

7 + 21 < 5x

28 < 5x

Разделим обе стороны на 5:

5.6 < x

Или в другой форме:

x > 5.6

Теперь перейдем ко второму неравенству:

6 - x > 2(1 - 4x) - 3(1 - 3x)

Раскроем скобки:

6 - x > 2 - 8x - 3 + 9x

Упростим:

6 - x > -1x - 1

Добавим x к обеим сторонам:

6 > -1x + x - 1

6 > -1

Утверждение 6 > -1 является верным, так как 6 действительно больше, чем -1.

Таким образом, решением второго неравенства является любое значение x.

В итоге, решениями системы неравенств являются все значения x, которые больше 5.6.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос