
Ctg2x+4=0 Cos3x=-1/2 2sinx+√3=0 Cosx/2=0 4sin2xcos2x=√3


Ответы на вопрос

Ответ:
Пошаговое объяснение:
ctg2x=-4, 2x=p-arctg4+pn, x=p/2-1/2 arctg4+pn/2
3x=+-2p/3+2pn, x=+- 2p/9+2pn/3
snx=-V3/2, x=(-1)^n*(-p/3)+pn
x/2=p/2+pn, x=p+2pn
sin4x=V3/2, 4x=(-1)^n*p/3+pn, x=(-1)^n*p/12+pn/4, n E Z



Let's solve each of the equations step by step:
- Ctg(2x) + 4 = 0:
To solve this equation, we'll rearrange it to isolate the cotangent term: Ctg(2x) = -4
Now, we can find the angle whose cotangent is -4. Since cotangent is the reciprocal of tangent, we can write: Tan(2x) = -1/4
Using the inverse tangent function, we find: 2x = arctan(-1/4)
However, the tangent function has a periodicity of π, so we need to consider multiple solutions: 2x = arctan(-1/4) + πn, where n is an integer
Finally, we can solve for x: x = (arctan(-1/4) + πn)/2, where n is an integer
- Cos(3x) = -1/2:
To solve this equation, we need to find the angles whose cosine is -1/2. This can be done using inverse cosine: 3x = arccos(-1/2)
Since cosine is periodic with a period of 2π, we need to consider multiple solutions: 3x = arccos(-1/2) + 2πn, where n is an integer
Finally, we can solve for x: x = (arccos(-1/2) + 2πn)/3, where n is an integer
- 2sin(x) + √3 = 0:
To solve this equation, we'll isolate the sine term: 2sin(x) = -√3
Dividing both sides by 2, we get: sin(x) = -√3/2
Now, we find the angles whose sine is -√3/2 using inverse sine: x = arcsin(-√3/2)
The sine function has a periodicity of 2π, so we need to consider multiple solutions: x = arcsin(-√3/2) + 2πn, where n is an integer
- Cos(x/2) = 0:
To solve this equation, we can use inverse cosine: x/2 = arccos(0)
Since the cosine of 0 is 1 at multiples of π, we have: x/2 = πn, where n is an integer
Multiplying both sides by 2, we find: x = 2πn, where n is an integer
- 4sin(2x)cos(2x) = √3:
To solve this equation, we'll use the double-angle formula for sine: 2sin(2x)cos(2x) = √3
Dividing both sides by 2, we get: sin(2x)cos(2x) = √3/2
Now, we can rewrite the left side using the sine double-angle formula: sin(4x)/2 = √3/2
Multiplying both sides by 2, we obtain: sin(4x) = √3
To find the angles whose sine is √3, we can use inverse sine: 4x = arcsin(√3)
The sine function has a periodicity of 2π, so we need to consider multiple solutions: 4x = arcsin(√3) + 2πn, where n is an integer
Finally, we can solve for x: x = (arcsin(√3) + 2πn)/4, where n is an integer
Please note that the solutions provided are general solutions that consider the periodicity of trigonometric functions.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili