
Z=-10xy^2+x^2+10x+1 при x+y=1


Ответы на вопрос

Роддипоарььььаьаавулвлуьв лвллвоатату лвлуцолцтц лаллуоу лвлвлвтаут двлвовта




To find the extreme values of the function Z = -10xy^2 + x^2 + 10x + 1 subject to the constraint x + y = 1, we can use the method of Lagrange multipliers. The method of Lagrange multipliers helps us find the critical points of a function subject to a constraint.
Step 1: Set up the Lagrange function. The Lagrange function is given by L(x, y, λ) = Z - λ(x + y - 1). Here, λ is the Lagrange multiplier.
Step 2: Find the partial derivatives of the Lagrange function with respect to x, y, and λ. ∂L/∂x = -10y^2 + 2x + 10 - λ ∂L/∂y = -20xy - λ ∂L/∂λ = -(x + y - 1)
Step 3: Set the partial derivatives equal to zero and solve the system of equations. Setting each partial derivative equal to zero: -10y^2 + 2x + 10 - λ = 0 ...(i) -20xy - λ = 0 ...(ii) -(x + y - 1) = 0 ...(iii)
Step 4: Solve for x, y, and λ using equations (i), (ii), and (iii). From equation (iii), we have x + y = 1, which implies y = 1 - x. Substitute this value of y into equation (ii): -20x(1 - x) - λ = 0 -20x + 20x^2 - λ = 0 20x^2 - 20x + λ = 0 ...(iv)
Now, use equations (i) and (iv) to solve for x and λ: From equation (i): λ = 2x + 10 - 10y^2
Substitute λ into equation (iv): 20x^2 - 20x + (2x + 10 - 10y^2) = 0 20x^2 - 18x + 10 - 10y^2 = 0
Step 5: Solve for x and y. To find x, we can use the quadratic formula: x = [18 ± √(18^2 - 4 * 20 * (10 - 10y^2))] / 40 x = [18 ± √(324 - 800 + 800y^2)] / 40 x = [18 ± √(800y^2 - 476)] / 40
Now, recall that y = 1 - x: x = [18 ± √(800(1 - x)^2 - 476)] / 40 x = [18 ± √(800 - 1600x + 800x^2 - 476)] / 40 x = [18 ± √(800x^2 - 1600x + 324)] / 40
Step 6: Find the corresponding values of y. Using y = 1 - x, we can find the values of y for the values of x obtained in step 5.
Step 7: Evaluate Z at each critical point (x, y) and find the extreme values. Now that we have the critical points (x, y), we can evaluate the function Z at each of these points and find the extreme values.
However, without specific values for x and y, it's not possible to determine the exact extreme values of Z. The solution above provides the critical points (x, y) where the extreme values of Z may occur, but to find the actual values, you need to substitute the values of x and y back into the original function Z = -10xy^2 + x^2 + 10x + 1.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili