
∫∫y/x dxdy; D: 1≤x≤e, 4≤y≤6


Ответы на вопрос

Ответ:
9djeodkdkjjwejdddkekelrlell



To evaluate the double integral ∫∫(y/x) dxdy over the region D: 1≤x≤e, 4≤y≤6, we need to integrate the function (y/x) with respect to x and then with respect to y over the given limits.
Let's start by integrating with respect to x first:
∫(y/x) dx = y * ∫(1/x) dx
Now, integrate (1/x) with respect to x:
∫(1/x) dx = ln|x| + C
where C is the constant of integration.
Now, substitute the result back into the original double integral:
∫∫(y/x) dxdy = ∫(y * (ln|x| + C)) dy
Now, integrate with respect to y:
∫(y * (ln|x| + C)) dy = ∫(y * ln|x|) dy + ∫(y * C) dy
Integrate both parts:
∫(y * ln|x|) dy = (1/2)y^2 * ln|x| + D1 ∫(y * C) dy = C/2 * y^2 + D2
where D1 and D2 are constants of integration.
Now, combine the results:
∫∫(y/x) dxdy = (1/2)y^2 * ln|x| + C/2 * y^2 + D1 + D2
Now, evaluate the definite integral over the given limits:
∫∫(y/x) dxdy = [(1/2)y^2 * ln|x| + C/2 * y^2] evaluated from y=4 to y=6
Let's find the value of the definite integral:
∫∫(y/x) dxdy = [(1/2)(6)^2 * ln|e| + C/2 * (6)^2] - [(1/2)(4)^2 * ln|e| + C/2 * (4)^2]
∫∫(y/x) dxdy = [(1/2)(36) * ln(e) + C/2 * (36)] - [(1/2)(16) * ln(e) + C/2 * (16)]
Since ln(e) is equal to 1, the expression simplifies to:
∫∫(y/x) dxdy = [(1/2)(36) + C/2 * (36)] - [(1/2)(16) + C/2 * (16)]
∫∫(y/x) dxdy = [18 + 18C] - [8 + 8C]
Now, the constant terms cancel out:
∫∫(y/x) dxdy = 18 + 18C - 8 - 8C
Finally, the result is:
∫∫(y/x) dxdy = 10 + 10C
Therefore, the value of the given double integral over the region D: 1≤x≤e, 4≤y≤6 is 10 + 10C, where C is the constant of integration. Note that without knowing the specific value of C, we cannot obtain a numerical result.


Похожие вопросы


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili