
В двух бочках вместе 885 л бензина. Когда из первой бочки взяли 25 бензина, а из второй бочки взяли
18 бензина, то в обеих бочках бензина стало поровну. Сколько литров бензина было в каждой бочке первоначально?

Ответы на вопрос

Ответ:
1)446 2)439
Пошаговое объяснение:
885-(25+18)=842
842/2=421
2) 421+18=439 2я бочка
1) 421+25=446 1вая бочка



Давайте обозначим количество бензина в первой бочке как Х, а во второй бочке как Y.
Из условия задачи мы знаем, что в двух бочках вместе 885 литров бензина:
X + Y = 885 ...(1)
Когда из первой бочки взяли 25 литров бензина и из второй бочки взяли 18 литров бензина, количество бензина стало одинаково:
(X - 25) = (Y - 18)
Теперь мы можем представить это уравнение в виде:
X - Y = 7 ...(2)
Теперь у нас есть система из двух уравнений:
- X + Y = 885
- X - Y = 7
Мы можем решить эту систему уравнений методом сложения. Для этого сложим оба уравнения:
(X + Y) + (X - Y) = 885 + 7
2X = 892
Теперь разделим обе стороны на 2:
X = 892 / 2 X = 446
Теперь, чтобы найти Y, подставим значение X в любое из первоначальных уравнений. Для простоты выберем первое уравнение:
446 + Y = 885
Теперь выразим Y:
Y = 885 - 446 Y = 439
Итак, первоначально в первой бочке было 446 литров бензина, а во второй бочке было 439 литров бензина.


Похожие вопросы


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili