
1+4+7+...+103 метод Гаусса


Ответы на вопрос





The sum of an arithmetic series can be calculated using the Gauss formula, which is also known as the arithmetic series formula. The formula is:
Sum = (n/2) * (first term + last term)
where:
- Sum is the sum of the series.
- n is the number of terms in the series.
- The first term is the first number in the series.
- The last term is the last number in the series.
In your case, you want to find the sum of the series 1 + 4 + 7 + ... + 103, where the first term is 1 and the last term is 103. The common difference between consecutive terms is 3 (i.e., 4 - 1 = 3, 7 - 4 = 3, and so on).
Let's find the number of terms (n) first: last term = 103 first term = 1 common difference = 3
To find the number of terms (n) in an arithmetic series, you can use the formula: n = (last term - first term) / common difference + 1
n = (103 - 1) / 3 + 1 n = 34
Now, we can find the sum (Sum) using the Gauss formula: Sum = (n / 2) * (first term + last term) Sum = (34 / 2) * (1 + 103) Sum = 17 * 104 Sum = 1768
So, the sum of the series 1 + 4 + 7 + ... + 103 using the Gauss method is 1768.


Похожие вопросы


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili