
Logx (x-3) - logx (9-x)/ logx-1 X < 0


Ответы на вопрос

Ответ:
-x+(-(9-x)+(x-3) log (x)) <0
Пошаговое объяснение:



To solve the inequality with the constraint , we need to follow a step-by-step process:
Step 1: Simplify the logarithmic expressions. Step 2: Combine the logarithms using logarithmic rules. Step 3: Solve for the intervals where the inequality holds true. Step 4: Apply the constraint to find the final solution.
Let's go through each step:
Step 1: Simplify the logarithmic expressions. We know that , so applying this rule: .
Step 2: Solve the inequality . The inequality is satisfied when the fraction is less than 1 but greater than 0: .
Step 3: Solve for the intervals where the inequality holds true. Let's solve the individual inequalities: and .
For the first inequality (): Cross-multiplying (remembering to consider the sign of the denominator): , .
This holds true when .
For the second inequality (): Cross-multiplying (again considering the sign of the denominator): , , , .
This quadratic expression factors as , which holds true when .
Step 4: Apply the constraint . Since is only defined when , we can narrow down our solution to the intersection of the intervals we found and the valid domain of : and , which simplifies to .
So, the solution for the given inequality with the constraint is .


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili