
Произведено 8 независимых испытаний, в каждом из которых вероятность появления события А равна 0,1.
Найти вероятность того, что событие А появится ровно 5 раз.

Ответы на вопрос

- Ответ:
Сложное событие B = {событие А появится в 8 независимых испытаниях хотя бы 2 раза, то есть не менее двух раз}.
Сложное событие C = {событие А появится в 8 независимых испытаниях менее двух раз}.
Событие C состоит из двух несовместных событий:
Событие C0 = {событие А появится в 8 независимых испытаниях ровно 0 раз, то есть не появится ни разу}.
Событие C1 = {событие А появится в 8 независимых испытаниях ровно 1 раз}.
В каждом из 8 испытаний вероятность того, что он появится событие A , равна p=0,1.
Следовательно, также в каждом из 8 испытаний вероятность того, что событие A не появится, равна
q=1−p=1−0,1=0,9.
Вероятность события C0 по формуле Бернулли равна
P(C0)=P8(0)=C08p0q8=8!0!8!⋅(0,1)0⋅(0,9)8=0,430467.
Вероятность события C1 по формуле Бернулли равна
P(C1)=P8(1)=C18p4q1=8!1!7!⋅(0,1)1⋅(0,9)7=0,382638.
События B и C противоположны. Следовательно, искомая вероятность равна
P(B)=1−P(C)=1−[P(C0)+P(C1)]==1−0,430467−0,382638≈0,19.
Ответ. P=1—[P8(0)+P8(1)]=0,19.
Пошаговое объяснение:
Сложное событие B = {событие А появится в 8 независимых испытаниях хотя бы 2 раза, то есть не менее двух раз}.
Сложное событие C = {событие А появится в 8 независимых испытаниях менее двух раз}.
Событие C состоит из двух несовместных событий:
Событие C0 = {событие А появится в 8 независимых испытаниях ровно 0 раз, то есть не появится ни разу}.
Событие C1 = {событие А появится в 8 независимых испытаниях ровно 1 раз}.
В каждом из 8 испытаний вероятность того, что он появится событие A , равна p=0,1.
Следовательно, также в каждом из 8 испытаний вероятность того, что событие A не появится, равна
q=1−p=1−0,1=0,9.
Вероятность события C0 по формуле Бернулли равна
P(C0)=P8(0)=C08p0q8=8!0!8!⋅(0,1)0⋅(0,9)8=0,430467.
Вероятность события C1 по формуле Бернулли равна
P(C1)=P8(1)=C18p4q1=8!1!7!⋅(0,1)1⋅(0,9)7=0,382638.
События B и C противоположны. Следовательно, искомая вероятность равна
P(B)=1−P(C)=1−[P(C0)+P(C1)]==1−0,430467−0,382638≈0,19.
Ответ. P=1—[P8(0)+P8(1)]=0,19.



Для решения этой задачи мы можем использовать биномиальное распределение, так как у нас есть независимые испытания с фиксированной вероятностью успеха (появления события А) в каждом испытании.
Биномиальное распределение задается формулой:
где:
- - количество испытаний (в данном случае 8)
- - количество раз, которое событие А должно произойти (в данном случае 5)
- - вероятность появления события А в одном испытании (в данном случае 0,1)
- - биномиальный коэффициент, равный
Подставляя значения, получим:
Вычислим каждую часть:
Теперь подставим все значения в формулу:
Итак, вероятность того, что событие А произойдет ровно 5 раз из 8 независимых испытаний, составляет примерно 0,0574 или около 5,74%.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili