Вопрос задан 07.07.2023 в 07:20. Предмет Математика. Спрашивает Войцеховская Анна.

Решите уравнения: а) 8^(x+3) = 1/64; б) 9^x - 7•3^x - 18=0; в) 2^(x+3) + 3•2^(x-1) = 38.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Velikiy Anton.

Пошаговое объяснение:

a)2^3x+9=2^-6

3x+9=-6

3x=-15

x= -5

б)(3х)^2-7*3^х-18=0

Замена:

t²-7t-18=0

t1= -2

t2=9

Обратная замена:

3^x=-2

3^x=9

x=2

в)на фото

х-1=1

х=1+1

х=2


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

а) Чтобы решить уравнение 8^(x+3) = 1/64, можно заметить, что 1/64 = 1/8^2. Поэтому мы можем записать уравнение следующим образом:

8^(x+3) = 8^(-2).

Теперь, чтобы решить это уравнение, приравняем показатели степени:

x + 3 = -2.

Вычтем 3 из обеих сторон:

x = -2 - 3,

x = -5.

Ответ: x = -5.

б) Дано уравнение 9^x - 7 * 3^x - 18 = 0. Заметим, что 9 = 3^2. Подставим это в уравнение:

(3^2)^x - 7 * 3^x - 18 = 0.

Теперь воспользуемся заменой: пусть y = 3^x. Тогда уравнение становится:

y^2 - 7y - 18 = 0.

Факторизуем это квадратное уравнение:

(y - 9)(y + 2) = 0.

Таким образом, получаем два возможных значения для y:

y - 9 = 0 => y = 9, y + 2 = 0 => y = -2.

Теперь решим уравнение для каждого значения y:

  1. y = 9: 3^x = 9. Применяя логарифм по основанию 3 к обеим сторонам, получаем: x = 2.

  2. y = -2: 3^x = -2. Так как степень не может быть отрицательной, нет решений для этого случая.

Ответ: x = 2.

в) Уравнение 2^(x+3) + 3 * 2^(x-1) = 38 можно привести к общему знаменателю и упростить:

2^(x+3) + 3 * 2^(x-1) = 2^3 * 2^x + 3 * 2^x = 8 * 2^x + 3 * 2^x = 11 * 2^x.

Теперь у нас есть уравнение 11 * 2^x = 38.

Разделим обе стороны на 11:

2^x = 38/11.

Применим логарифм по основанию 2 к обеим сторонам:

x = log2(38/11).

Это десятичное значение можно приближенно вычислить с помощью калькулятора или программы для вычисления логарифмов.

Ответ: x ≈ log2(38/11).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос