
X^2log625(2-x)<=log5(x^2-4x+4)


Ответы на вопрос

Ответ:
Пошаговое объяснение:
,...........




To solve the inequality , we need to be careful with the logarithmic terms and the restrictions on the domain of the logarithmic functions. Let's break down the steps to solve this inequality:
Step 1: Domain Restrictions Notice that is only defined when because the base of the logarithm, 625, is a positive number. This means . Also, the expression is only defined when , which simplifies to . This is true for all real except .
So, the domain for this inequality is and .
Step 2: Solve the Inequality Let's deal with the logarithmic terms first:
Since , (since the base is greater than 1 and the argument is positive).
Now, we can rewrite the inequality as:
But remember that is positive, so dividing by it doesn't change the inequality direction. Therefore, we have:
Step 3: Solve the Numerator Let's simplify the right side of the inequality:
Now we have:
Step 4: Evaluate the Logarithm Remember that is defined only when , which is true for all except . But we have already established that is not in the domain of the original inequality.
Therefore, the inequality holds true for all (within the domain) because will always be non-negative and less than or equal to in that domain.
In summary, the solution to the inequality is , within the given domain restrictions.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili