Вопрос задан 05.07.2023 в 01:47. Предмет Математика. Спрашивает Рикудов Александр.

Напишите всевозможные трехзначные числа, составленные с по- мощью цифр 1, 5 6 (используя каждую

цифру только один раз).Найдите наибольший общий делитель этих чисел. ПОМОГИТЕ ПОЖАЛУЙСТА!!!​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Топчанский Арсен.

Эти трехзначные числа: 156, 165, 516, 561, 615, 651.

Заметим, что сумма цифр каждого числа равна 1+5+6=12. Так как сумма цифр каждого числа делится на 3, то и каждое число делится на 3 по соответствующему признаку делимости. Значит, у этих чисел есть общий делитель 3. Остается проверить, является ли он наибольшим.

Для этого достаточно рассмотреть два наименьших числа, разложив их на множители:

156=2^2\cdot3\cdot13

165=3\cdot5\cdot11

НОД этой пары чисел равен 3. Значит, если к ним дописать еще некоторый набор чисел, то никакой общий делитель получившегося набора чисел не может быть больше НОДа этой пары чисел.

Таким образом, с одной стороны у всех чисел есть общий делитель 3, с другой стороны у этих же чисел не может быть общего делителя, больше 3. Значит, НОД всех чисел равен 3.

Ответ: числа 156, 165, 516, 561, 615, 651; их НОД равен 3

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для составления всех возможных трехзначных чисел с помощью цифр 1, 5 и 6, используя каждую цифру только один раз, мы можем применить принцип перестановок.

Используя цифры 1, 5 и 6, у нас есть 3 возможных варианта для первой цифры (1, 5 и 6), 2 возможных варианта для второй цифры (оставшиеся две цифры) и 1 вариант для третьей цифры (последняя оставшаяся цифра).

Таким образом, мы можем составить следующие числа:

156, 165, 561, 516, 615, 651.

Чтобы найти наибольший общий делитель (НОД) этих чисел, мы можем использовать алгоритм Евклида.

НОД(156, 165) = 3 НОД(3, 561) = 3 НОД(3, 516) = 3 НОД(3, 615) = 3 НОД(3, 651) = 3

Таким образом, наибольший общий делитель (НОД) этих чисел равен 3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос