
Для треугольника с вершинамии А(1;2;5), В(0;-2;1) и С(5;0;-1) найти квадрат длины медианы,
проведенной из вершины В

Ответы на вопрос

Ответ:
19
Пошаговое объяснение:
используя формулы середины отрезки




Для нахождения квадрата длины медианы, проведенной из вершины B треугольника ABC, нужно выполнить следующие шаги:
Найдите координаты середины стороны AC (точки M) с помощью средних значений координат вершин A и C:
M(x_m, y_m, z_m) = ((x_A + x_C) / 2, (y_A + y_C) / 2, (z_A + z_C) / 2)
Вычислите вектор медианы MB (вектор из вершины B в точку M):
MB = M - B = (x_m - x_B, y_m - y_B, z_m - z_B)
Найдите длину вектора MB:
Длина MB = √(x_MB^2 + y_MB^2 + z_MB^2)
Квадрат длины медианы можно найти как квадрат длины вектора MB.
Давайте выполним вычисления:
Вершины треугольника: A(1, 2, 5) B(0, -2, 1) C(5, 0, -1)
Находим координаты точки M: x_m = (x_A + x_C) / 2 = (1 + 5) / 2 = 3 y_m = (y_A + y_C) / 2 = (2 + 0) / 2 = 1 z_m = (z_A + z_C) / 2 = (5 - 1) / 2 = 2
Вычисляем вектор MB: MB = M - B = (3 - 0, 1 - (-2), 2 - 1) = (3, 3, 1)
Находим длину вектора MB: Длина MB = √(3^2 + 3^2 + 1^2) = √19
Квадрат длины медианы MB: Квадрат длины MB^2 = 19
Итак, квадрат длины медианы, проведенной из вершины B треугольника ABC, равен 19.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili