Вопрос задан 04.07.2023 в 14:30. Предмет Математика. Спрашивает Ezhevskaya Lina.

Найдите наименьшее общее кратное чисел: 1) 3 и 6 2) 2 и 28 и 9 3) 15 и 20​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Станиславчук Елизавета.

Ответ:

1) 18 2)56 3)60

Пошаговое объяснение:

0 0
Отвечает Чернова Анастасия.

точно не знаю сори плз.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения наименьшего общего кратного (НОК) двух или более чисел, вы можете использовать метод простых множителей или применить следующий алгоритм:

  1. Разложите каждое число на простые множители.
  2. Выберите максимальное количество каждого простого множителя, встречающегося в разложениях.
  3. Умножьте выбранные простые множители, чтобы получить НОК.

Давайте применим этот алгоритм к вашим числам:

  1. 3 и 6: 3 = 3^1 6 = 2^1 * 3^1

    Максимальное количество каждого простого множителя: 2^1 * 3^1 = 6 НОК(3, 6) = 6

  2. 2, 28 и 9: 2 = 2^1 28 = 2^2 * 7^1 9 = 3^2

    Максимальное количество каждого простого множителя: 2^2 * 3^2 * 7^1 = 252 НОК(2, 28, 9) = 252

  3. 15 и 20: 15 = 3^1 * 5^1 20 = 2^2 * 5^1

    Максимальное количество каждого простого множителя: 2^2 * 3^1 * 5^1 = 60 НОК(15, 20) = 60

Итак, наименьшие общие кратные для данных пар чисел:

  1. НОК(3, 6) = 6
  2. НОК(2, 28, 9) = 252
  3. НОК(15, 20) = 60
0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос