Lim 1-cos6x/1-cos2xx стремиться к 0
Ответы на вопрос
Ответ:
9
Пошаговое объяснение:
По методу Лопиталя

To determine the limit of the expression (1 - cos(6x)) / (1 - cos(2x)) as x approaches 0, we can try to directly substitute x = 0 into the expression. However, this results in an indeterminate form (0/0), which means we need to perform further algebraic manipulation to simplify the expression and find its limit.
Let's start by using the trigonometric identity cos(2θ) = 1 - 2sin²θ to rewrite the denominator:
arduino1 - cos(2x) = 1 - (1 - 2sin²x) = 2sin²x
Now, the expression becomes:
arduino(1 - cos(6x)) / (2sin²x)
Using another trigonometric identity cos(2θ) = 2cos²θ - 1, we can express cos(6x) in terms of cos(2x):
scsscos(6x) = 2cos²(3x) - 1
Now, substitute this back into the expression:
arduino(1 - (2cos²(3x) - 1)) / (2sin²x)
Simplify:
arduino(2 - 2cos²(3x)) / (2sin²x)
Now, factor out a 2 from the numerator:
arduino2(1 - cos²(3x)) / (2sin²x)
Apply the trigonometric identity 1 - cos²θ = sin²θ:
arduino2sin²(3x) / (2sin²x)
Cancel out the 2 and one of the sin²x terms:
arduinosin²(3x) / sin²x
Now, we have an expression that doesn't have an indeterminate form as x approaches 0. Substituting x = 0, we get:
arduinosin²(0) / sin²(0) = 0 / 0
We're still left with an indeterminate form. However, we can use the limit properties to evaluate this limit:
scsslim(x->0) (sin²(3x) / sin²x) = lim(x->0) sin²(3x) * lim(x->0) (1 / sin²x)
As x approaches 0, sin²(3x) approaches 0 and (1 / sin²x) approaches infinity. This gives us an indeterminate form 0 * ∞.
In this case, to determine the limit, we should further analyze the behavior of sin²(3x) and (1 / sin²x) as x approaches 0. It seems that sin²(3x) is approaching 0 much faster than (1 / sin²x) is approaching infinity, resulting in an overall limit of 0.
However, this is a bit more intricate to prove formally, and it would involve using epsilon-delta definitions of limits or L'Hôpital's rule to handle the indeterminate form. If you are dealing with this in a calculus course or context, you might need to explore these concepts in more depth.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
