Вопрос задан 02.07.2023 в 12:58. Предмет Математика. Спрашивает Николаев Артем.

1) |х|=4 2) |х - 7=9 3) |5 - у|=18 ​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Григорян Арман.

Ответ:

1) 4; -4

2) 16; -2

3) 23; - 13

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Let's solve each of the equations one by one:

  1. |x| = 4

In this equation, we have the absolute value of x equal to 4. The absolute value of a number represents its distance from zero on the number line. Therefore, the equation |x| = 4 means that x is either 4 units to the right of zero or 4 units to the left of zero. This leads to two possible solutions:

x = 4 or x = -4

  1. |x - 7| = 9

Similar to the previous equation, we have the absolute value of (x - 7) equal to 9. This means that (x - 7) is either 9 units to the right of zero or 9 units to the left of zero. We can solve this equation by considering both possibilities:

For (x - 7) = 9: x - 7 = 9 x = 9 + 7 x = 16

For (x - 7) = -9: x - 7 = -9 x = -9 + 7 x = -2

Therefore, the solutions to the equation |x - 7| = 9 are x = 16 and x = -2.

  1. |5 - y| = 18

Here, we have the absolute value of (5 - y) equal to 18. This means that (5 - y) is either 18 units to the right of zero or 18 units to the left of zero. We can solve this equation by considering both possibilities:

For (5 - y) = 18: 5 - y = 18 -y = 18 - 5 -y = 13 y = -13

For (5 - y) = -18: 5 - y = -18 -y = -18 - 5 -y = -23 y = 23

Hence, the solutions to the equation |5 - y| = 18 are y = -13 and y = 23.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос