Вопрос задан 02.07.2023 в 09:17. Предмет Математика. Спрашивает Базарова Дарима.

Найти НОК (210, 35).

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тыщенко Екатерина.

Ответ:

210=5×2×7×3

35=5×7

НОК(210,35)=210

ОТМЕТЬ ЛУЧШИМ ОТВЕТОМ ПОЖАЛУЙСТА

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти наименьшее общее кратное (НОК) двух чисел, можно использовать формулу:

НОК(a, b) = |a * b| / НОД(a, b),

где a и b - два числа, а НОД(a, b) - наибольший общий делитель этих чисел.

Для чисел 210 и 35, найдем сначала их наибольший общий делитель (НОД).

Делители числа 210: 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210. Делители числа 35: 1, 5, 7, 35.

Наибольший общий делитель этих чисел равен 35.

Теперь найдем НОК(210, 35):

НОК(210, 35) = |210 * 35| / НОД(210, 35) = |7,350| / 35 = 210.

Таким образом, НОК(210, 35) равно 210.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос