Вопрос задан 01.07.2023 в 07:19. Предмет Математика. Спрашивает Рожкова Лена.

Найдите НОД (120, 150), НОК (15,30)люди помогите тупому​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Узоков Мехрубон.

Ответ:

НОД (120, 150)=2×3×5=30

Ответ:30

НОК (15,30)=2×3×5=30

Ответ:30

0 0
Отвечает Чайка Александра.

Ответ:

Пошаговое объяснение:

НОД (120. 150)=600 НОК(15 и 30)=30

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я помогу вам с этим!

НОД (Наибольший Общий Делитель) для чисел 120 и 150 можно найти с помощью алгоритма Евклида. Алгоритм заключается в последовательных делениях одного числа на другое с вычислением остатков до тех пор, пока остаток не станет равен нулю. Когда это произойдет, делитель (последнее ненулевое число) будет НОД.

120 ÷ 150 = 0 (остаток 120) 150 ÷ 120 = 1 (остаток 30) 120 ÷ 30 = 4 (остаток 0)

Таким образом, НОД(120, 150) = 30.

НОК (Наименьшее Общее Кратное) можно вычислить с использованием формулы:

НОК(a, b) = |a * b| / НОД(a, b)

Для чисел 15 и 30:

НОД(15, 30) = 15 НОК(15, 30) = |15 * 30| / 15 = 30

Итак, НОК(15, 30) = 30.

Теперь вы знаете, что НОД(120, 150) = 30, а НОК(15, 30) = 30.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос