
1) (2x + 7>1,x-3<1;2) 3y < 21,4-y >0;


Ответы на вопрос

Ответ:1)
{2x+7 >1
{x - 3<1
{2x > 1 - 7
{x < 1 + 3
{x > (- 6)/2
{x < 4
{ x> - 3
{ x< 4
x∈ (-3;4)
2)
{3y<21
{4-y>0
{y < 21/3
{4 > y
{y<7
{y< 4
y∈(-∞,4 )
3)
{4х +9 > -15
{2-x<5
{4x> -15 -9
{2-5 < x
{4x > -24
{x >-3
{x>-24/4
{x>-3
{x>-6
{x>-3
x∈(-3; ∞ )
4)
{2x+3>x-1
{5x-22<x+2
{2x -x > -1-3
{5x-x< 2+22
{x>-4
{4x<24
{x>-4
{x<6
x∈(-4 , 6 )
5)
{7x+9<2x-1
{4+11x>9x-14
{7x-2x<-1-9
{11x-9x>-14-4
{5x<-10
{2x> - 18
{x<-2
{x> - 9
x∈ (-9, - 2)
6)
{x>0
{x-5>2x+1 ⇒ -5-1>2x-x
{x>0
{x< -6
Пошаговое объяснение:



It looks like you've provided two sets of inequalities. Let's solve each set step by step:
Set 1:
For the first inequality: Subtract 7 from both sides: Divide both sides by 2 (remember to reverse the inequality since you're dividing by a negative number):
For the second inequality: Add 3 to both sides:
So, the solution for the first set of inequalities is: .
Set 2:
For the first inequality: Divide both sides by 3:
For the second inequality: Subtract 4 from both sides: Multiply both sides by -1 (remember to reverse the inequality since you're multiplying by a negative number):
So, the solution for the second set of inequalities is: and . Since the second inequality is more restrictive, the overall solution is .
To summarize, the solutions are:
- Set 1:
- Set 2:


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili