Вопрос задан 30.06.2023 в 09:34. Предмет Математика. Спрашивает Chechott Mark.

найдите предел последовательности lim и

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Езеев Илиа.

Пошаговое объяснение:

\lim_{n \to \infty} \frac{15}{n^3+1}=0. Докажем это.

По определению предела, для всякого положительного ε найдется номер N, что для всех номеров n, бОльших N, верно, что | \frac{15}{n^3+1}-0|< \varepsilon.

Заметим, что | \frac{15}{n^3+1}|< \frac{15}{n^3} для всякого натурального n. Тогда, если \frac{15}{n^3}< \varepsilon, или (решая неравенство относительно n) n >\sqrt[3]{\frac{15}{\varepsilon}}, то, взяв в качестве N целую часть числа \sqrt[3]{\frac{15}{\varepsilon}}, получим, что | \frac{15}{n^3+1}|< \frac{15}{n^3} < \varepsilon. Резюмируя: научились для всякого положительного ε находить номер N (в качестве N можно взять целую часть числа \sqrt[3]{\frac{15}{\varepsilon}}), что для всех номеров n, бОльших N, выполняется неравенство  | \frac{15}{n^3+1}-0|< \varepsilon. А это и значит, что предел равен нулю.

Интуитивно это можно объяснить так: увеличивая номер n, получаем все меньшее и меньшее число, причем оно всегда больше нуля, но его можно сделать очень маленьким.

Аналогично, докажем, что \lim_{n \to \infty} \frac{n+1}{n-1}=1

По определению предела, для всякого положительного ε найдется номер N, что для всех номеров n, бОльших N, верно, что | \frac{n+1}{n-1}-1|< \varepsilon.

Заметим, что |\frac{n+1}{n-1}-1|=|\frac{n+1-(n-1)}{n-1}|=|\frac{2}{n-1}| . Тогда, если |\frac{2}{n-1}|< \varepsilon, или (решая неравенство относительно n) n > \frac{2}{\varepsilon}+1, то, взяв в качестве N целую часть числа \frac{2}{\varepsilon}+1, получим, что | \frac{n+1}{n-1}-1|< \varepsilon. Резюмируя: научились для всякого положительного ε находить номер N (в качестве N можно взять целую часть числа \frac{2}{\varepsilon}+1), что для всех номеров n, бОльших N, выполняется неравенство  | \frac{n+1}{n-1}-1|< \varepsilon. А это и значит, что предел равен единице.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы найти предел последовательности, необходимо знать ее явную формулу или хотя бы описание. Ваш вопрос не содержит явных данных о последовательности, поэтому я не могу определить ее предел.

Если у вас есть формула или описание последовательности, пожалуйста, предоставьте больше информации, и я с удовольствием помогу вам найти предел.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос