
Сколько существует натуральных чисел, меньших 300 , которые делятся на 2 , но не делятся на 7?


Ответы на вопрос

Числа, делящиеся на 2 и 7 можно определить выражением:
2*7*n = 14*n, где n- число натурального ряда.
По условию, эти числа должны быть не больше 300, т.е.
14*n ≤ 300 ⇒ n ≤ 300 : 14; ⇒ n ≤ 21ц 6/14, так как n - целое число, то самое большое получается при n₊ = 21, и всего их 21.
2. Аналогично получается выражение для чисел, делящиеся на 28.
28*n ≤ 300; n ≤ 300 : 28; n ≤ 10ц 20/28, а максимальное n₋ =10;
3. Чтобы ответить на вопрос задания и найти N, т е максимальное количество чисел, отвечающих заданию, из чисел делящихся на 14 нужно отнять делящиеся еще и на 28.
N = n₊ - n₋ = 21 - 10 = 11
Ответ: Имеется 11 чисел меньше 300, которые делятся на 2 и 7 и не делятся при этом на 28.
Более простое рассуждение:
На 2 и 7 делятся числа 2*7 =14, а также кратные 14, то есть 14*2 = 28; 14*3 = 42; 14*4 = 56; 14*5 = 70 и так далее, последнее число должно по условию быть меньше 300, а на 14 оно должно делиться без остатка 300:14 = 21 (6 ост) . это число 21*14 = 294.
По условию мы должны исключить числа, делящиеся на 28, Это будет половина всех найденных чисел, так как каждое ВТОРОЕ число будет делиться не только на 14, но и на 2*14 =28 . Таких чисел, меньших, чем 300 у нас 10, или 300 : 28 = 10 (20 ост)
Если исключить, числа, делящиеся также на 28, получим:
21 - 10 = 11
Ответ: Есть 11 чисел, меньше, чем 300, которые делятся на 2 и 7, но не делятся на 28



Чтобы найти количество натуральных чисел, меньших 300, которые делятся на 2, но не делятся на 7, мы можем использовать метод перебора или деления. В данном случае, деления более эффективный способ.
- Начнем с наименьшего натурального числа, которое делится на 2, но не делится на 7, это 2.
- Затем добавим к этому числу 2 и проверим, делится ли новое число на 7. Если нет, мы добавляем его к нашему списку.
- Продолжаем этот процесс, пока полученное число меньше 300.
Вот как это выглядит в коде на Python:
pythoncount = 0
for num in range(2, 300, 2):
if num % 7 != 0:
count += 1
print(count)
Вычислив этот код, мы получим количество таких натуральных чисел, которые делятся на 2, но не делятся на 7. В данном случае ответ равен 128. Таким образом, существует 128 натуральных чисел, меньших 300, которые соответствуют вашим условиям.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili