
1) (x – 3)(x + 7) - (x + 7)(x – 8) = 0; 2) (4x -9)(x - 2) + (1 - x)(x - 2) = 0;3) 0,2x (x – 5) +
8(x – 5) = 0;4) 7(x – 7) - (x – 7)2 = 0.

Ответы на вопрос

Ответ:
1) х=-7
2) х₁=2; х₂=
3) х₁=-40; х₂=5
4) х=7
Пошаговое объяснение:
1)(x – 3)(x + 7) - (x + 7)(x – 8) = 0
(x+7)×(x-3-(x-8)) = 0
(x+7)×(-3+8) = 0
(x+7)×5 = 0
5х+35=0
5х=-7
х=-7
2) (4x -9)(x - 2) + (1 - x)(x - 2) = 0
(х-2)×(3х-8)=0
х-2=0 3х-8=0
х₁=2; х₂=



Let's solve each of these quadratic equations step by step:
- (x - 3)(x + 7) - (x + 7)(x - 8) = 0
First, expand both sets of parentheses:
(x^2 - 3x + 7x - 21) - (x^2 - 8x + 7x - 56) = 0
Now, simplify the equation:
(x^2 + 4x - 21) - (x^2 - x - 56) = 0
Now, distribute the negative sign:
x^2 + 4x - 21 - x^2 + x + 56 = 0
Now, combine like terms:
5x + 35 = 0
Subtract 35 from both sides:
5x = -35
Divide by 5:
x = -7
So, the solution to the equation is x = -7.
- (4x - 9)(x - 2) + (1 - x)(x - 2) = 0
First, expand both sets of parentheses:
(4x^2 - 8x - 9x + 18) + (x - x^2 - 2x + 2) = 0
Now, simplify the equation:
(4x^2 - 17x + 18) + (x - x^2 - 2x + 2) = 0
Now, combine like terms:
4x^2 - 17x + 18 + x - x^2 - 2x + 2 = 0
Now, combine like terms again:
3x^2 - 18x + 20 = 0
Divide the entire equation by 3 to simplify:
x^2 - 6x + 20/3 = 0
To solve this quadratic equation, you can use the quadratic formula:
x = (-b ± √(b² - 4ac)) / (2a)
In this case, a = 1, b = -6, and c = 20/3. Plug these values into the quadratic formula:
x = (-(-6) ± √((-6)² - 4(1)(20/3))) / (2(1))
x = (6 ± √(36 - 80/3)) / 2
x = (6 ± √(108/3 - 80/3)) / 2
x = (6 ± √(28/3)) / 2
x = (6 ± √(28)/√(3)) / 2
x = (6 ± 2√(7)/√(3)) / 2
Now, simplify further by dividing both the numerator and denominator by 2:
x = (3 ± √(7)/√(3))
Rationalize the denominator by multiplying the numerator and denominator by √(3):
x = (3 ± √(7)√(3)/3)
So, the solutions to the equation are:
x = (3 + √(21))/3 x = (3 - √(21))/3
- 0.2x(x - 5) + 8(x - 5) = 0
First, distribute the constants and variables:
0.2x^2 - 1x + 8x - 40 = 0
Now, combine like terms:
0.2x^2 + 7x - 40 = 0
To solve this quadratic equation, you can multiply the entire equation by 5 to eliminate the decimal:
5(0.2x^2 + 7x - 40) = 5(0)
x^2 + 35x - 200 = 0
Now, let's solve this quadratic equation. You can use the quadratic formula:
x = (-b ± √(b² - 4ac)) / (2a)
In this case, a = 1, b = 35, and c = -200. Plug these values into the quadratic formula:
x = (-35 ± √(35² - 4(1)(-200))) / (2(1))
x = (-35 ± √(1225 + 800)) / 2
x = (-35 ± √2025) / 2
x = (-35 ± 45) / 2
Now, we have two possible solutions:
x = (-35 + 45) / 2 = 10 / 2 = 5
x = (-35 - 45) / 2 = -80 / 2 = -40
So, the solutions to the equation are:
x = 5 and x = -40.
- 7(x - 7) - (x - 7)^2 = 0
Let's simplify the equation:
7x - 49 - (x^2 - 14x + 49) = 0
Now, distribute the negative sign:
7x - 49 - x^2 + 14x - 49 = 0
Combine like terms:
6x - x^2 - 98 = 0
Now, rearrange the terms:
-x^2 + 6x - 98 = 0
Multiply the entire equation by -1 to make it easier to work with:
x^2 - 6x + 98 = 0
This is a quadratic equation in standard form. To solve it, you can use the quadratic formula:
x = (-b ± √(b² - 4ac)) / (2a)
In this case, a = 1, b = -6, and c = 98. Plug these values into the quadratic formula:
x = (-(-6) ± √((-6)² - 4(1)(98))) / (2(1))
x = (6 ± √(36 - 392)) / 2
x = (6 ± √(-356)) / 2
Since the term inside the square root is negative, this equation has no real solutions. It has complex solutions:
x = (6 ± √(356)i) / 2
x = (3 ± √(356)i)
So, the solutions are:
x = 3 + √(356)i and x = 3 - √(356)i.
These are the solutions to the given equations.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili