
Sin²(arcctg(1/2) - arctg(-1/3))


Ответы на вопрос

Ответ:
0,02
Пошаговое объяснение:
sin^2(arctg(1/7)=((1/7)/(sqrt(1+1/49)))^2=1/49:50/49=1/50=0,02



To simplify the expression sin²(arctan(1/2) - arctan(-1/3)), we can use the trigonometric identity for the difference of arctan angles:
arctan(a) - arctan(b) = arctan((a - b) / (1 + ab))
In this case, a = 1/2 and b = -1/3, so we have:
arctan(1/2) - arctan(-1/3) = arctan((1/2 - (-1/3)) / (1 + (1/2)(-1/3)))
Now, let's calculate the values in the arctan expression:
1/2 - (-1/3) = 1/2 + 1/3 = 5/6 1 + (1/2)(-1/3) = 1 - 1/6 = 5/6
So, we have:
arctan(1/2) - arctan(-1/3) = arctan((5/6) / (5/6))
Now, the fractions cancel out:
arctan(1/2) - arctan(-1/3) = arctan(1)
Now, we need to find sin²(arctan(1)). To do that, we can use the fact that the tangent of an angle is equal to the ratio of the opposite side to the adjacent side in a right triangle. So, if we consider a right triangle with an angle of arctan(1), the opposite side and the adjacent side will have the same length.
Let's assume that the opposite and adjacent sides both have a length of 1 unit. Then, by the Pythagorean theorem, the hypotenuse will have a length of √2 units.
Now, we can calculate sin(arctan(1)):
sin(arctan(1)) = opposite side / hypotenuse = 1/√2
Finally, square sin(arctan(1)) to get sin²(arctan(1)):
sin²(arctan(1)) = (1/√2)² = 1/2
So, sin²(arctan(1/2) - arctan(-1/3)) = 1/2.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili