Вопрос задан 28.06.2023 в 10:30. Предмет Математика. Спрашивает Иванов Сос.

1) sinx < 1/2 2) cos2x > 0 3) 3 – 4cos2x > 0 4) cosx > – 1/2 5) sin3x < 0 6)

tgх> 7) sinx < cosx 8) 1 – 4sin2 x < 0
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Малахов Сергей.

1. sinx = 1/2,

x = (-1)ⁿ · π/6 + πn, n ∈ Z

Ответ: (-1)ⁿ · π/6 + πn, n ∈ Z.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Let's solve each of these inequalities step by step:

  1. sin(x) < 1/2: To solve this inequality, we need to find the values of x for which sin(x) is less than 1/2.

sin(x) < 1/2 when x is in the interval (-π/6, π/6) or (5π/6, 7π/6).

  1. cos(2x) > 0: To solve this inequality, we need to find the values of x for which cos(2x) is greater than 0.

cos(2x) > 0 when x is in the intervals (-π/4 + πn, π/4 + πn), where n is an integer.

  1. 3 - 4cos(2x) > 0: To solve this inequality, we need to find the values of x for which 3 - 4cos(2x) is greater than 0.

3 - 4cos(2x) > 0 when cos(2x) < 3/4. Using the previous result, we can find the intervals for x.

x is in the intervals (-π/3 + πn, π/3 + πn), where n is an integer.

  1. cos(x) > -1/2: To solve this inequality, we need to find the values of x for which cos(x) is greater than -1/2.

cos(x) > -1/2 when x is in the intervals (-2π/3 + 2πn, 2π/3 + 2πn), where n is an integer.

  1. sin(3x) < 0: To solve this inequality, we need to find the values of x for which sin(3x) is less than 0.

sin(3x) < 0 when x is in the intervals (2πn, π/3 + 2πn) or (2π/3 + 2πn, π + 2πn), where n is an integer.

  1. tan(x) > 0: To solve this inequality, we need to find the values of x for which tan(x) is greater than 0.

tan(x) > 0 when x is in the intervals (nπ, π/2 + nπ), where n is an odd integer.

  1. sin(x) < cos(x): To solve this inequality, we need to find the values of x for which sin(x) is less than cos(x).

sin(x) < cos(x) when x is in the intervals (π/4 + πn, 3π/4 + πn), where n is an integer.

  1. 1 - 4sin^2(x) < 0: To solve this inequality, we need to find the values of x for which 1 - 4sin^2(x) is less than 0.

1 - 4sin^2(x) < 0 when sin^2(x) > 1/4, which is true for all values of x.

So, the solution to this inequality is all real values of x.

Please note that the intervals are given in terms of n, which represents an integer. The intervals repeat periodically as n varies.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос