
Острый угол ромба равен 60°, периметр равен 23,6 м. Вычисли меньшую диагональ ромба. Ответ:
меньшая диагональ ромба равна ... М.

Ответы на вопрос

Ответ:
d2=5,9 м
Пошаговое объяснение:
Острый угол равен А= 60
Р=23,6 м
Найти :d2
Решение
P=4a
a=P/4=23,6:4=5,9 м
sin(A/2)=(d2/2)×a
(d2/2)=a×sin(A/2)=a×sin(60/2)=
=a×sin30=5,9×1/2=2,95 м
d2=2,95×2=5,9 м
Ответ : d2=5,9 м



Для вычисления меньшей диагонали ромба (d2) вам потребуется использовать тригонометрию, учитывая, что острый угол ромба равен 60 градусов. Первым шагом определим длину стороны ромба (a).
Мы знаем, что периметр (P) ромба равен 23,6 метра, и ромб имеет 4 одинаковые стороны, поэтому:
P = 4a
Теперь мы можем выразить сторону ромба (a):
a = P / 4 a = 23,6 м / 4 a = 5,9 м
Теперь, имея значение стороны a, мы можем вычислить длину меньшей диагонали (d2), используя тригонометрию в прямоугольном треугольнике с углом 30 градусов (половина острого угла ромба). Мы будем использовать тригонометрическую функцию тангенс (тангенс угла равен отношению противоположенной стороны к прилежащей):
tan(30°) = d2 / (a / 2)
Мы знаем значение тангенса 30 градусов (tan(30°) = 1/√3) и значение стороны a:
1/√3 = d2 / (5,9 м / 2)
Теперь рассчитаем длину меньшей диагонали (d2):
d2 = (1/√3) * (5,9 м / 2) d2 ≈ (0,5774) * (2,95 м) d2 ≈ 1,71 м
Итак, меньшая диагональ ромба равна приблизительно 1,71 метра.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili