Вопрос задан 20.06.2023 в 16:02. Предмет Математика. Спрашивает Мирная Лера.

автомобилист проехал первую половину пути со скорость в 8 раз больше , чем вторую. Поэтому, средняя

скорость автомобилиста равна 30 км.ч. Определить скорость автомобилиста на 2ой половине пути.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лесников Илья.

Ответ:

дано : V1=8V2, S1=S2, VCP=16км/ч формула VCP=[S1+S2]/(t1+t2), t1=S1/V1=S1/8V2 ,t2=S2/V2=S1/V2.Тогда подставим :16=(S1+S1)/(S1/8V2+S1/V2)=2/(1/8V2+1/V2)=2*8V2/9, V2=9км/ч. V1=8*9=72км/ч.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that a driver traveled the first half of the distance with a speed 8 times greater than the speed of the second half. The average speed of the driver is given as 30 km/h. We need to determine the speed of the driver during the second half of the journey.

Solution

Let's assume the speed of the driver during the second half of the journey is x km/h.

To find the speed during the first half, we can use the given information that the driver's speed during the first half is 8 times greater than the speed during the second half. Therefore, the speed during the first half is 8x km/h.

The average speed of the driver is given as 30 km/h. We can use the formula for average speed, which is the total distance divided by the total time. Since the distance for both halves is the same, we can write:

Average Speed = (Total Distance) / (Total Time)

The total distance is the sum of the distances traveled during the first and second halves. Let's assume the total distance is d km. Therefore, the distance traveled during each half is d/2 km.

The total time is the sum of the times taken during the first and second halves. The time taken is equal to the distance divided by the speed. Therefore, the time taken during the first half is (d/2) / (8x) hours and the time taken during the second half is (d/2) / x hours.

Substituting these values into the average speed formula, we get:

30 = (d/2 + d/2) / ((d/2) / (8x) + (d/2) / x)

Simplifying the equation, we get:

30 = (d/2) * (8x + x) / (d/2 + d/2)

Simplifying further, we get:

30 = (9x) / 2

Solving for x, we find:

x = (30 * 2) / 9 = 6.67 km/h

Therefore, the speed of the driver during the second half of the journey is approximately 6.67 km/h.

Answer

The speed of the driver during the second half of the journey is approximately 6.67 km/h.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос