
Длина дорожки легкоатлетического стадиона равна 400 м. Из диаметрально противоположных точек
дорожки одновременно в разных направлениях с постоянной скоростью выбежали два бегунчика. Один из них 5 км/ч второй 7км/ч. Сколько раз они встретятся за время 30 минутной тренировки ПОМОГИТЕ

Ответы на вопрос

Будем рассматривать скорость догона второго к первому, т.к они движутся в разных направлениях => что они движутся друг на друга
скорость догона 5+7=12км/час
если они находятся на противоположных точках=> расстояние между ними 200метров
теперь будем рассматривать первого бегуна как неподвижное тело:
за 1/2 часа второй бегун пройдет 12км/час * 1/2 = 6000 м
считаем, сколько раз он пройдет первого бегуна:(6000-200)/400=14,5
значит он пройдет 14 кругов да еще и в первые двести метров они встретились
Итого 15 раз



Для решения этой задачи давайте рассмотрим движение каждого бегуна отдельно. Поскольку они выбежали в противоположных направлениях, мы можем считать, что один из бегунов стоит на месте, а другой движется с суммарной скоростью, равной сумме их скоростей.
Обозначим: - \( v_1 = 5 \) км/ч - скорость первого бегуна, - \( v_2 = 7 \) км/ч - скорость второго бегуна, - \( t \) - время в часах.
Тогда скорость их относительного движения будет равна \( v_1 + v_2 \).
С учетом этого мы можем записать уравнение для расстояния между бегунами в зависимости от времени: \[ \text{расстояние} = \text{скорость} \times \text{время} \]
\[ \text{расстояние} = (v_1 + v_2) \times t \]
Также, поскольку они выбежали из диаметрально противоположных точек, начальное расстояние между ними равно длине дорожки стадиона, т.е., 400 м.
Таким образом, уравнение будет следующим: \[ 400 \, \text{м} = (v_1 + v_2) \times t \]
Теперь мы можем решить это уравнение относительно времени. Подставим известные значения: \[ 400 = (5 + 7) \times t \]
\[ 400 = 12 \times t \]
\[ t = \frac{400}{12} \]
\[ t \approx 33.33 \, \text{мин} \]
Таким образом, бегуны встретятся примерно через 33.33 минуты. Однако, это время больше, чем 30 минут, которые длится тренировка. Таким образом, они не встретятся за время тренировки.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili