Вопрос задан 20.06.2023 в 04:37. Предмет Математика. Спрашивает Кутявина Алина.

Решите пожалуйста. Спасибо) 1. Площадь поверхности шара равна 16. Найти площадь большего круга

шара. 2. Через середину радиуса шара проведена перпендикулярная к нему плоскость. Найдите радиус шара, если площадь сечения равна 147пи
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Armen Armen.

Ответ:

Пошаговое объяснение:

1 Площадь поверхности шара Sш=4πR^2, R=√(Sш/4π)=√(16/4π)=2/√π

S(д)=πR^2

S(д)= π*(2/√π)^2=4

2. Sсеч=πR^2 = 147π

R= √147

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

1. Площадь поверхности шара вычисляется по формуле: S = 4πr², где S - площадь поверхности, r - радиус шара. Из условия задачи известно, что S = 16, поэтому получаем уравнение: 4πr² = 16. Разделим обе части уравнения на 4π, получим: r² = 4/π. Извлекая квадратный корень из обеих частей уравнения, получим: r = sqrt(4/π). Таким образом, радиус шара равен sqrt(4/π).

2. Площадь сечения шара, проведенного через середину радиуса и перпендикулярной к нему плоскости, равна площади окружности. Площадь окружности вычисляется по формуле: S = πr², где S - площадь окружности, r - радиус шара. Из условия задачи известно, что S = 147π, поэтому получаем уравнение: πr² = 147π. Сокращаем общий множитель π на обеих частях уравнения и получаем: r² = 147. Извлекая квадратный корень из обеих частей уравнения, получим: r = sqrt(147). Таким образом, радиус шара равен sqrt(147).

Большой круг шара - это окружность, проходящая через его центр. Площадь большой окружности шара также можно вычислить по формуле: S = πR², где S - площадь окружности, R - радиус шара. В нашем случае радиус шара равен sqrt(4/π), поэтому площадь большой окружности можно вычислить как S = π(sqrt(4/π))² = π(4/π) = 4. Таким образом, площадь большого круга шара равна 4.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос