
Кто прав? Учитель написал на доске четырехзначное число, в котором все цифры разные. Ученики по
очереди сказали фразы: "данное число делится нацело на 3", "данное число содержит цифру 4", "данное число делится нацело на 6", "данное число содержит цифру 1 ". Известно, что один ученик сказал ложь, а трое сказали правду. Найдите наименьшее число из всех возможных, написанных учителем.

Ответы на вопрос

Ответ:
1047
Пошаговое объяснение:



Ответ:
Ответ:
1074
вывод
1074 1248 1254 1284 1374 1428 1452 1458 1470 1476 1482 1524 1542 1548 1584 1674 1704 1734 1740 1746 1764 1794 1824 1842 1854 1974 2148 2154 2184 2418 2514 2814 3174 3714 4128 4152 4158 4170 4176 4182 4218 4512 4518 4710 4716 4812 5124 5142 5148 5184 5214 5412 5418 5814 6174 6714 7014 7104 7134 7140 7146 7164 7194 7314 7410 7416 7614 7914 8124 8142 8154 8214 8412 8514 9174 9714



Finding the Smallest Possible Number
To find the smallest possible number that satisfies the given conditions, let's analyze the statements made by the students:
1. "The number is divisible by 3." 2. "The number contains the digit 4." 3. "The number is divisible by 6." 4. "The number contains the digit 1."
We know that one student lied and three students told the truth. Let's consider each statement and its implications:
1. If the number is divisible by 3, the sum of its digits must also be divisible by 3. This means that the sum of the digits must be either 3, 6, 9, 12, or 15. 2. If the number contains the digit 4, it can be any digit from 0 to 9 in the thousands, hundreds, tens, or units place. 3. If the number is divisible by 6, it must be divisible by both 2 and 3. Since it is already divisible by 3 (as per statement 1), it must also be divisible by 2. This means that the units digit must be an even number (0, 2, 4, 6, or 8). 4. If the number contains the digit 1, it can be any digit from 0 to 9 in the thousands, hundreds, tens, or units place.
Based on these conditions, we can start by considering the smallest possible number that satisfies the statements:
- The sum of the digits must be 3, so the smallest possible sum is 3. This means that the number must contain the digits 1 and 2. - The units digit must be even, so the smallest possible units digit is 2. - The number must contain the digit 4, so the smallest possible number is 124.
Now, let's check if this number satisfies the statements:
1. Divisible by 3: The sum of the digits (1 + 2 + 4) is 7, which is not divisible by 3. Therefore, this statement is false. 2. Contains the digit 4: The number 124 does contain the digit 4. Therefore, this statement is true. 3. Divisible by 6: The number 124 is not divisible by 6 because it is not divisible by 2. Therefore, this statement is false. 4. Contains the digit 1: The number 124 does contain the digit 1. Therefore, this statement is true.
Based on the analysis, we can conclude that the number 124 does not satisfy all the statements. We need to find a larger number that satisfies the conditions.
Let's consider the next smallest possible number:
- The sum of the digits must be 6, so the smallest possible sum is 6. This means that the number must contain the digits 1, 2, and 3. - The units digit must be even, so the smallest possible units digit is 2. - The number must contain the digit 4, so the smallest possible number is 1234.
Now, let's check if this number satisfies the statements:
1. Divisible by 3: The sum of the digits (1 + 2 + 3 + 4) is 10, which is not divisible by 3. Therefore, this statement is false. 2. Contains the digit 4: The number 1234 does contain the digit 4. Therefore, this statement is true. 3. Divisible by 6: The number 1234 is not divisible by 6 because it is not divisible by 2. Therefore, this statement is false. 4. Contains the digit 1: The number 1234 does contain the digit 1. Therefore, this statement is true.
Based on the analysis, we can conclude that the number 1234 does not satisfy all the statements. We need to find a larger number that satisfies the conditions.
Continuing this process, we can find the smallest possible number that satisfies all the statements.


Похожие вопросы


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili