
На карточках написаны цифры 2,3,4,5,6,7,8,9. Наудачу берут две карточки. Какова вероятность, что
обе выбранные цифры нечетные. С объяснением пожалуйста

Ответы на вопрос

Ответ: 2 к 8
(2/8=1/4)



Відповідь:
60% что возьмешь одну четную а другую не четную 23% что возьмешь две чётные и 17% что возьмешь две не четные
Покрокове пояснення:



Problem Analysis
We are given a set of cards with the numbers 2, 3, 4, 5, 6, 7, 8, and 9 written on them. We randomly select two cards. We need to find the probability that both selected numbers are odd.Solution
To find the probability, we need to determine the total number of possible outcomes and the number of favorable outcomes.Total Number of Possible Outcomes: The total number of possible outcomes is the number of ways we can select two cards from the given set of numbers. This can be calculated using the combination formula:
``` nCr = n! / (r!(n-r)!) ```
where `n` is the total number of cards (8 in this case) and `r` is the number of cards we want to select (2 in this case).
Using the combination formula, we can calculate the total number of possible outcomes.
Number of Favorable Outcomes: The number of favorable outcomes is the number of ways we can select two odd numbers from the given set. We can calculate this by counting the number of odd numbers in the set and using the combination formula.
Let's calculate the total number of possible outcomes and the number of favorable outcomes.
Calculation
Total number of possible outcomes: ``` n = 8 (total number of cards) r = 2 (number of cards to select)nCr = 8! / (2!(8-2)!) = 8! / (2!6!) = (8 * 7) / (2 * 1) = 28 ```
Number of favorable outcomes: ``` Number of odd numbers in the set = 4 (3, 5, 7, 9)
r = 2 (number of cards to select)
nCr = 4! / (2!(4-2)!) = 4! / (2!2!) = (4 * 3) / (2 * 1) = 6 ```
Probability Calculation
Now that we have the total number of possible outcomes (28) and the number of favorable outcomes (6), we can calculate the probability of selecting two odd numbers.``` Probability = Number of favorable outcomes / Total number of possible outcomes = 6 / 28 = 3 / 14 ```
Therefore, the probability of selecting two odd numbers from the given set is 3/14.
Conclusion
The probability of selecting two odd numbers from the given set of cards (2, 3, 4, 5, 6, 7, 8, 9) is 3/14.

Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili