
Одна вакцина формирует иммунитет по отношению к краснухе в 95% случаев. Предположим, что
вакцинировалось 30% популяции и что вероятность заболеть краснухой у вакцинированного человека без иммунитета такая же, как и у невакцинированного. Какова вероятность того, что человек, заболевший краснухой, был вакцинирован?

Ответы на вопрос

Ответ:
Пошаговое объяснение:
возмем пример 10000 человек
30% вакцинир. это 3000
70% невакцинир. 7000
из числа вакцинир. 5% не иммунит.
это 3000×0,05=150 чел
Всего заболеют 7000+150=7150
требуемая вероятность =
= 150÷ 7150=0,021



Calculation of the Probability
To calculate the probability that a person who has contracted rubella (also known as German measles) has been vaccinated, we need to consider the information provided.
According to the statement, a single vaccine provides immunity against rubella in 95% of cases. Additionally, 30% of the population has been vaccinated. It is assumed that the probability of contracting rubella for a vaccinated person without immunity is the same as that for an unvaccinated person.
To calculate the probability, we can use Bayes' theorem, which states:
P(A|B) = (P(B|A) * P(A)) / P(B)
Where: - P(A|B) is the probability of event A occurring given that event B has occurred. - P(B|A) is the probability of event B occurring given that event A has occurred. - P(A) is the probability of event A occurring. - P(B) is the probability of event B occurring.
In this case, event A is being vaccinated, and event B is contracting rubella.
Let's calculate the probability step by step.
Step 1: Define the Events
Let's define the events: - A: Being vaccinated - B: Contracting rubella
Step 2: Calculate the Probability of Being Vaccinated (P(A))
According to the information provided, 30% of the population has been vaccinated. Therefore, the probability of being vaccinated is 0.3.
P(A) = 0.3
Step 3: Calculate the Probability of Contracting Rubella Given Vaccination (P(B|A))
According to the statement, the probability of contracting rubella for a vaccinated person without immunity is the same as that for an unvaccinated person. Let's assume this probability is denoted as p.
P(B|A) = p
Step 4: Calculate the Probability of Contracting Rubella (P(B))
To calculate the probability of contracting rubella, we need to consider both the vaccinated and unvaccinated populations.
The probability of contracting rubella for a vaccinated person is given by: - The probability of being vaccinated (0.3) multiplied by the probability of contracting rubella given vaccination (p).
The probability of contracting rubella for an unvaccinated person is given by: - The probability of not being vaccinated (1 - 0.3 = 0.7) multiplied by the probability of contracting rubella given no vaccination (q).
Since the probability of contracting rubella is the sum of these two probabilities, we have:
P(B) = (0.3 * p) + (0.7 * q)
Step 5: Calculate the Probability of Being Vaccinated Given Contracting Rubella (P(A|B))
Using Bayes' theorem, we can now calculate the probability of being vaccinated given contracting rubella:
P(A|B) = (P(B|A) * P(A)) / P(B)
Substituting the values we have calculated:
P(A|B) = (p * 0.3) / [(0.3 * p) + (0.7 * q)]
Please note that we do not have specific values for p and q, so we cannot provide an exact numerical answer. However, the formula above allows you to calculate the probability based on the specific values of p and q.
Remember to substitute the values of p and q with appropriate probabilities based on the context of the problem.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili