
Вопрос задан 16.06.2023 в 01:26.
Предмет Математика.
Спрашивает Симонова Аня.
Докажите непрерывность функции в точке x=-1, заданной формулой y=3x-1.


Ответы на вопрос

Отвечает Падунина Алина.
Ответ:
Пошаговое объяснение:
Не бань если не правильно...




Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для доказательства непрерывности функции в точке x = -1, заданной формулой y = 3x - 1, мы должны показать, что предел функции существует в точке x = -1 и равен значению функции в этой точке.
Вычислим значение функции в точке x = -1: y = 3(-1) - 1 = -3 - 1 = -4.
Рассмотрим предел функции при x, стремящемся к -1: lim (x -> -1) (3x - 1) = 3(-1) - 1 = -3 - 1 = -4.
Заметим, что значение функции в точке (-1) совпадает с пределом функции при x, стремящемся к -1.
Таким образом, мы показали, что предел функции существует в точке x = -1 и равен значению функции в этой точке. Следовательно, функция y = 3x - 1 непрерывна в точке x = -1.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili