
Y'' = √x-sin 2x x0=1 y(0)=-1/8 y'(0)=1/8cos 2 y'(0)=1/2


Ответы на вопрос

Ответ:
y'' = √x-sin 2x x0=1 y(0)=-1/8 y'(0)=1/8cos 2 y'(0)=1/2y'' = √x-sin 2x x0=1 y(0)=-1/8 y'(0)=1/8cos 2 y'(0)=1/2
Пошаговое объяснение:
Izichka



It appears that there might be a typo in the information you provided. You've mentioned two values for y'(0), which is not consistent. Please verify the correct initial conditions for y'(0) so that I can assist you with the given differential equation.
In the meantime, I can help you solve the differential equation Y'' = √x - sin(2x) with the initial conditions x₀ = 1 and y(0) = -1/8.
To solve this differential equation, we'll follow these steps:
Step 1: Integrate the given equation to obtain y'. Step 2: Solve the equation obtained in step 1 to find y. Step 3: Apply the initial conditions to determine the specific solution.
Let's begin:
Step 1: Integrate the given equation to obtain y' Integrating both sides of the differential equation Y'' = √x - sin(2x) with respect to x once, we get: y' = ∫ (√x - sin(2x)) dx
To integrate the terms on the right-hand side, we split the integral as follows: y' = ∫ (√x dx) - ∫ (sin(2x) dx)
Integrating each term separately: ∫ (√x dx) = (2/3) * x^(3/2) ∫ (sin(2x) dx) = -(1/2) * cos(2x)
Combining the integrals: y' = (2/3) * x^(3/2) - (1/2) * cos(2x) + C
Here, C represents the constant of integration.
Step 2: Solve the equation obtained in step 1 to find y To find y, we integrate y' with respect to x: y = ∫ [(2/3) * x^(3/2) - (1/2) * cos(2x) + C] dx
Integrating each term separately: ∫ [(2/3) * x^(3/2) - (1/2) * cos(2x) + C] dx = (2/5) * x^(5/2) - (1/4) * sin(2x) + Cx + D
Here, D is the constant of integration.
Step 3: Apply the initial conditions to determine the specific solution Using the initial condition y(0) = -1/8, we substitute x = 0 and y = -1/8 into the equation obtained in step 2: (-1/8) = (2/5) * (0)^(5/2) - (1/4) * sin(2(0)) + C * 0 + D (-1/8) = 0 - 0 + D D = -1/8
Therefore, the specific solution for the given initial conditions is: y = (2/5) * x^(5/2) - (1/4) * sin(2x) - (1/8) * x - 1/8


Похожие вопросы


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili