
A^(5-x)(3x-1)=1a в степени (5-x)(3x-1)= 1


Ответы на вопрос

a^(5-x)(3x-1) = a^0
(5-x)(3x-1)=0
5-x=0
x1=5
3x-1=0
3x=1
x2=1/3



To solve for x in the equation:
A^(5-x)(3x-1) = 1
We can start by noticing that any non-zero number raised to the power of zero is equal to one. Therefore, if A is not equal to one, we can rewrite the equation as:
A^(5-x) = 1 / (3x - 1)
Now, we can use the fact that the logarithm of a number raised to a power is equal to the product of the power and the logarithm of the number. So, taking the logarithm of both sides of the equation with base A, we get:
(5 - x) log(A) = log[1 / (3x - 1)]
Using the fact that log(1/a) = -log(a), we can simplify the right-hand side:
(5 - x) log(A) = -log(3x - 1)
Dividing both sides by log(A) and multiplying by -1, we get:
x = (log(3x - 1)) / log(A) - 5
Note that this solution is valid only if A is not equal to one, because in that case we would have:
A^(5-x)(3x-1) = 1^(5-x)(3x-1) = 1*(3x-1) = 3x-1
And we would obtain a linear equation, which is easy to solve:
3x - 1 = 1
3x = 2
x = 2/3
So the solution to the equation depends on whether A is equal to one or not.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili