Вопрос задан 14.04.2021 в 12:04. Предмет Математика. Спрашивает Костюнина Екатерина.

Найдите наименьший общий знаменатель: 3⁄5 и 6⁄9.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иванов Влад.
Наименьший общий знаменатель = 45
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы найти наименьший общий знаменатель (НОЗ), нужно разложить оба знаменателя на простые множители и выбрать минимальный набор множителей, включая все повторяющиеся множители, которые есть в обоих разложениях.

Разложим знаменатели 3/5 и 6/9 на простые множители:

  • 3/5: знаменатель 5 уже является простым числом, поэтому он не раскладывается на множители.
  • 6/9: знаменатель 9 можно разложить на простые множители: 9 = 3 * 3, а знаменатель 6 = 2 * 3.

Таким образом, наименьший общий знаменатель для дробей 3/5 и 6/9 будет равен наименьшему общему кратному (НОК) чисел 5, 2 и 3 (множители знаменателей):

  • 5 = 5 * 1
  • 2 = 2 * 1
  • 3 = 3 * 1

Мы видим, что все множители присутствуют в разложениях знаменателей, и каждый множитель входит в разложения только один раз. Поэтому НОЗ для дробей 3/5 и 6/9 равен 5 * 2 * 3 = 30.

Чтобы привести дроби 3/5 и 6/9 к общему знаменателю 30, нужно умножить каждую из них на соответствующий множитель, чтобы получить:

  • 3/5 * 6/6 = 18/30
  • 6/9 * 10/10 = 20/30

Таким образом, мы получили эквивалентные дроби с общим знаменателем 30: 18/30 и 20/30.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос