Вопрос задан 10.03.2021 в 00:40. Предмет Математика. Спрашивает Кубарь Настя.

Из двух городов Одновременно навстречу друг другу выехали два автомобиля одна ехала со скоростью 50

км ч а другой со скоростью 70 км ч На сколько километров больше проехал второй автомобиль до места встречи если расстояние между городами 600 км
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ряузов Саня.
1) 50 + 70 = 120 км/ч - скорость сближения,
2) 600 : 120 = 5 ч - время в пути до встречи,
3) 50 * 5 = 250 км - проехал 1 автомобиль,
4) 70 * 5 = 350 км - проехал 2 автомобиль до встречи,
5) 350 - 250 = 100 км,

ответ: на 100 км больше
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте рассчитаем время, которое потребуется обоим автомобилям, чтобы добраться до места встречи.

Пусть х - расстояние (в километрах), на которое первый автомобиль проехал больше второго до места встречи.

Так как оба автомобиля ехали одновременно, можно сказать, что время, потраченное обоими автомобилями, одинаково. Обозначим это время как t.

Тогда для первого автомобиля можно записать: 50t = 600 - x, где 50t - расстояние, пройденное первым автомобилем, и 600 - x - расстояние, оставшееся для второго автомобиля.

Для второго автомобиля: 70t = x.

Мы можем решить эту систему уравнений, чтобы найти значение x.

50t = 600 - x 70t = x

Из второго уравнения можно выразить x: x = 70t.

Подставим это значение в первое уравнение:

50t = 600 - 70t 120t = 600 t = 600 / 120 t = 5

Теперь найдем x:

x = 70t x = 70 * 5 x = 350

Таким образом, второй автомобиль проехал 350 км до места встречи, а первый автомобиль проехал 600 - 350 = 250 км до места встречи.

Ответ: Второй автомобиль проехал на 100 км больше до места встречи.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос