
1) ||х-3|=0, 2) |5-х||=0, 3) ||х+3|=0, 4) |7-х||=0


Ответы на вопрос

x=3
2) |5-х|=05-x=0
x=5
3) |х+3|=0 x+3=0 x=-3
4) |7-х|=0 7-x=0
x=7



x-3=0
x=3+0
х=3
|3-3|=0
Ответ:х=3
2)|5-х|=0
5-х=0
х=5-0
х=5
|5-5|=0
Ответ:х=5
3)|х+3|=0
х+3=0
х=0-3
х=-3
|-3+3|=0
Ответ:х=-3
4)|7-х|=0
7-х=0
х=7-0
х=7
|7-7|=0
Ответ:х=7



Let's solve each of these equations step by step:
- ||x-3| = 0:
Since the absolute value of any number is always non-negative, the only way for the absolute value to equal zero is when the expression inside it equals zero. Therefore, we have:
|x - 3| = 0
This implies that x - 3 = 0, so we solve for x:
x - 3 = 0 x = 3
Therefore, the solution to this equation is x = 3.
- |5 - x| = 0:
Similar to the previous equation, the absolute value can only equal zero when the expression inside it equals zero:
|5 - x| = 0
This implies that 5 - x = 0, so we solve for x:
5 - x = 0 x = 5
The solution to this equation is x = 5.
- ||x + 3| = 0:
Just like in the first equation, the outer absolute value sign ensures that the expression inside it must equal zero. So we have:
|x + 3| = 0
This implies that x + 3 = 0, so we solve for x:
x + 3 = 0 x = -3
The solution to this equation is x = -3.
- |7 - x| = 0:
Similar to the previous equations, the absolute value can only equal zero when the expression inside it equals zero:
|7 - x| = 0
This implies that 7 - x = 0, so we solve for x:
7 - x = 0 x = 7
The solution to this equation is x = 7.
To summarize:
- x = 3
- x = 5
- x = -3
- x = 7


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili