
А) |4х|=2,5 Б)|6х-1,2|=16,5 С)|0,5х+2|+1=0,1


Ответы на вопрос





А) To solve the equation |4x| = 2.5, we consider two cases:
Case 1: 4x = 2.5 Solving for x, we divide both sides of the equation by 4: 4x = 2.5 x = 2.5/4 x = 0.625
Case 2: -4x = 2.5 Solving for x, we divide both sides of the equation by -4: -4x = 2.5 x = 2.5/(-4) x = -0.625
Therefore, the solutions to the equation |4x| = 2.5 are x = 0.625 and x = -0.625.
Б) To solve the equation |6x - 1.2| = 16.5, we consider two cases:
Case 1: 6x - 1.2 = 16.5 Adding 1.2 to both sides of the equation: 6x = 16.5 + 1.2 6x = 17.7 Dividing both sides of the equation by 6: x = 17.7/6 x ≈ 2.95
Case 2: -(6x - 1.2) = 16.5 Expanding the negative sign: -6x + 1.2 = 16.5 Subtracting 1.2 from both sides of the equation: -6x = 16.5 - 1.2 -6x = 15.3 Dividing both sides of the equation by -6: x = 15.3/(-6) x ≈ -2.55
Therefore, the solutions to the equation |6x - 1.2| = 16.5 are x ≈ 2.95 and x ≈ -2.55.
С) To solve the equation |0.5x + 2| + 1 = 0.1, we consider two cases:
Case 1: 0.5x + 2 + 1 = 0.1 Subtracting 3 from both sides of the equation: 0.5x = 0.1 - 3 0.5x = -2.9 Dividing both sides of the equation by 0.5: x = -2.9/0.5 x = -5.8
Case 2: -(0.5x + 2) + 1 = 0.1 Expanding the negative sign: -0.5x - 2 + 1 = 0.1 Simplifying: -0.5x - 1 = 0.1 Adding 1 to both sides of the equation: -0.5x = 0.1 + 1 -0.5x = 1.1 Dividing both sides of the equation by -0.5: x = 1.1/(-0.5) x = -2.2
Therefore, the solutions to the equation |0.5x + 2| + 1 = 0.1 are x = -5.8 and x = -2.2.


Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili