Вопрос задан 17.02.2021 в 12:27. Предмет Математика. Спрашивает Ковшик Юля.

Помогите пожалуйста упрастите выражения: (2х+1)(4x^2-2x+1)-2x(2x-3)^2-1

(3y-2)(9y^2+6y+4)-3y(3y+1)^2 +8 Мне срочно нужно решить!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Горяная Ангелина.
1. 8х³+1-2х(2х-3)²-1 = 8х³-2х(4х²-12х+9) = 8х³-8х³+24х²-18х = 24х²-18х 2. 27у³-8-3у(3у+1)²+8 = 27у³-3у(9у²+6у+1) = 27у³-27у³-18у²-3у = -18у²-3у
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте разберемся с этими выражениями. Начнем с первого:

(2x + 1)(4x^2 - 2x + 1) - 2x(2x - 3)^2 - 1

Распределим умножение в первом слагаемом:

(2x + 1) * 4x^2 - (2x + 1) * 2x + (2x + 1) * 1 - 2x(2x - 3)^2 - 1

Упростим каждое слагаемое:

8x^3 + 4x^2 - 4x^2 - 2x^2 + 2x + 1 - 2x(4x^2 - 12x + 9) - 1

Упростим еще дальше:

8x^3 - 2x^2 + 2x + 1 - 8x^3 + 24x^2 - 18x - 1

Теперь объединим подобные слагаемые:

-2x^2 + 24x^2 + 2x - 18x + 1 - 1

Получим окончательный результат:

22x^2 - 16x

Теперь перейдем ко второму выражению:

(3y - 2)(9y^2 + 6y + 4) - 3y(3y + 1)^2 + 8

Распределим умножение в первом слагаемом:

(3y - 2) * 9y^2 + (3y - 2) * 6y + (3y - 2) * 4 - 3y(3y + 1)^2 + 8

Упростим каждое слагаемое:

27y^3 - 18y^2 + 18y^2 - 12y + 12y - 8 - 3y(9y^2 + 6y + 1) + 8

Упростим еще дальше:

27y^3 - 18y^2 + 18y^2 - 12y + 12y - 8 - 27y^3 - 18y^2 - 3y + 8

Теперь объединим подобные слагаемые:

-3y + 8

Таким образом, упрощенные выражения:

Первое выражение: 22x^2 - 16x

Второе выражение: -3y + 8

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос