Вопрос задан 02.09.2020 в 17:22. Предмет Геометрия. Спрашивает Мещеряков Артур.

Помогите пожалуйста НА ПОВЕРХНОСТИ ШАРА ВЫБРАНЫ ТОЧКИ А И В ТАК,ЧТО АВ=40СМ.А РАСТОЯНИЕ ОТ ЦЕНТРА

ШАРА ДО ПРЯМОЙ АВ РАВНО 15СМ .ЧЕРЕЗ ТОЧКИ А И В ПРОВЕДЕНО СЕЧЕНИЕ ,ПЛОЩАДЬ КОТОРОГО РАВНА 576ПИ СМ 2.НАЙДИТЕ РАСТОЧНИЕ ОТ ЦЕНТРА ШАРА ДО ПЛОСКОСТИ СЕЧЕНИЯ .
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given a sphere with points A and B on its surface such that AB = 40 cm. The distance from the center of the sphere to the line AB is 15 cm. A section is made through points A and B, and the area of this section is given as 576π cm². We need to find the distance from the center of the sphere to the plane of the section.

Solution

To solve this problem, we can use the properties of a sphere and a section made through two points on its surface.

Let's denote the center of the sphere as O and the distance from O to the plane of the section as h.

We are given that AB = 40 cm, and the distance from O to line AB is 15 cm. Let's call this distance d.

Using the Pythagorean theorem, we can find the value of d: d² = OB² - h² We are also given that the area of the section is 576π cm². The area of a section made through two points on the surface of a sphere is given by the formula: Area = πr² - πh² Where r is the radius of the sphere.

Since the area of the section is given as 576π cm², we can write the equation: 576π = πr² - πh²

Simplifying the equation, we get: r² - h² = 576

Now, we have two equations: 1. d² = OB² - h² 2. r² - h² = 576

To find the value of h, we need to solve these equations simultaneously.

Let's substitute OB with r in equation 1: d² = r² - h²

Now, we can substitute the value of r² from equation 2 into equation 1: d² = 576 + h² - h² d² = 576

Taking the square root of both sides, we get: d = 24

So, the value of d is 24 cm.

Now, let's substitute the value of d into equation 1 to find the value of h: 24² = r² - h² 576 = r² - h²

Substituting the value of r² from equation 2, we get: 576 = 576 + h² - h²

Simplifying the equation, we get: h = 0

Therefore, the distance from the center of the sphere to the plane of the section is 0 cm.

Answer

The distance from the center of the sphere to the plane of the section is 0 cm.

Note: The solution provided is based on the given information and the mathematical properties of a sphere and a section made through two points on its surface.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос