
Вопрос задан 09.06.2018 в 19:26.
Предмет Геометрия.
Спрашивает Плосконосова Настя.
В правильной 12-угольной пирамиде апофема равна 2 корня из 2,все боковые грани которой наклонены к
плоскости основанию под углом 45.Найдите её объем. ОЧЧЧЧЧЧЧЧЧЧЧЧЧЧень СРочно!

Ответы на вопрос

Отвечает Дрямова Анна.
На фото изображена часть данной пирамиды: ОР-высота пирамиды,
АВ- одна из сторон основания, РК=2√2 -апофема, ∠ОРК угол наклона апофемы к основанию, равен 45°.
∠АОВ=360/12=30°. В основании лежат 12 треугольников, Вычислим площадь одного из них.
ΔРОК. ОР=ОК=2
ОК⊥АВ.
ΔАОК: ∠АОК=30/2=15°. tg15°=АК/ОК; АК=0,27·2=0,54; АВ=0,54·2=1,08.
SΔАОВ=0,5·ОК·АВ=0,5·2·1,08=1,08.
Площадь основания состоит из 12-ти таких треугольников.
Площадь основания пирамиды равна S=1,08·12=12,96.
Объем пирамиды равен V=12.96·2/3=8,64
Ответ : 8,64 куб. ед.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili