
Биссектриса угла А трапеции АВСД пересекает боковую сторону СД в точке К. Найти АВ, если АД=24,
ВС=6, СК:КД=1:2.

Ответы на вопрос

( рисунок во вложении)
Решение:
Продолжим прямые АВ и СД, пункт пересечения обозначим М. Треугольник МВС подобен треугольнику МАД по трем углам ( угол МВС = углу ВАД, угол МСВ = углу СДА (прямые ВС и АД параллельные так, как АВСД - трапеция, а эти две пары углов соответственные) и угол АМД - общий)
Коэффициент подобия треугольников к = АД/ВС = 24/6=4, значит МД:МС=4:1, а раз по условию СК:КД=1:2, то МС = СК и пункт К является серединой отрезка МД.
Если АК - биссектриса ( по условию) и медиана( К является серединой отрезка МД), то треугольник АМД - равнобедреный( у равнобедреного треугольника медиана является биссекрисой) и АМ = АД = 24 см ( боковые стороны)
АМ:ВМ = 4:1(коэффициент подобия треугольников к =4), а раз АМ = 24, то ВМ =АМ/4=6см
АВ = АМ - ВМ = 24 - 6 = 18 см
Ответ: АВ = 18 см



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili