Вопрос задан 21.07.2020 в 12:23. Предмет Геометрия. Спрашивает Тимофеева Ульяна.

Докажите, что прямые, содержащие диагонали ромба, являются его осями симметрии.  Рисунок есть и

первые 2 пункта в решении тоже присутствуют, но вот что дальше? Как дальше решать? Напишите пожалуйста продолжение. 
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гура Коля.
Ход решения неверный!.
нужно доказать, что треугольники, на которые разделился ромб диагоналями равны между собой. для этого вспоминаем свойства диагоналей ромба: они перпендикулярны, в точке пересечения делятся пополам, являются биссектрисами углов. так-же вспоминаем свойства ромба: противоположные углы равны, все стороны равны. исходя из всего этого можно сделать вывод, что треугольники равны, а значит, имея общие стороны, симметричны относительно этих сторон. а эти стороны - диагонали ромба. ч.т.д.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос