
Вопрос задан 21.07.2020 в 12:23.
Предмет Геометрия.
Спрашивает Тимофеева Ульяна.
Докажите, что прямые, содержащие диагонали ромба, являются его осями симметрии. Рисунок есть и
первые 2 пункта в решении тоже присутствуют, но вот что дальше? Как дальше решать? Напишите пожалуйста продолжение.


Ответы на вопрос

Отвечает Гура Коля.
Ход решения неверный!.
нужно доказать, что треугольники, на которые разделился ромб диагоналями равны между собой. для этого вспоминаем свойства диагоналей ромба: они перпендикулярны, в точке пересечения делятся пополам, являются биссектрисами углов. так-же вспоминаем свойства ромба: противоположные углы равны, все стороны равны. исходя из всего этого можно сделать вывод, что треугольники равны, а значит, имея общие стороны, симметричны относительно этих сторон. а эти стороны - диагонали ромба. ч.т.д.
нужно доказать, что треугольники, на которые разделился ромб диагоналями равны между собой. для этого вспоминаем свойства диагоналей ромба: они перпендикулярны, в точке пересечения делятся пополам, являются биссектрисами углов. так-же вспоминаем свойства ромба: противоположные углы равны, все стороны равны. исходя из всего этого можно сделать вывод, что треугольники равны, а значит, имея общие стороны, симметричны относительно этих сторон. а эти стороны - диагонали ромба. ч.т.д.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili