Вопрос задан 17.07.2020 в 18:30.
Предмет Геометрия.
Спрашивает Яковлев Андрей.
пусть ABCD- произвольный четырёхугольник, K, L, M, N есть соответственно середины сторон AB, BC,
CD, AD. Доказать, что KLMN- параллелограмОтветы на вопрос
        Отвечает Александрова Анастасия.
                
     Рассмотрим треугольники ABC и ACD. В треугольнике АВС KL - средняя линия, она равна половине стороны AC и параллельна ей. Аналогично MN - средняя линия треугольника ACD, которая равна половине стороны AC и параллельна ей. Если каждая из двух прямых параллельна третьей, то эти прямые параллельны, поэтому отрезки KL и MN равны и параллельны. Так как в четырехугольнике KLMN две противоположные стороны равны и параллельны, этот четырехугольник - параллелограмм, что и требовалось доказать. 
                            
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
	- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			