
Вопрос задан 01.06.2020 в 01:38.
Предмет Геометрия.
Спрашивает Брянский Андрей.
ГЕОМЕТРИЯ: Найдите расстояние от вершины А куба ABCDA1B1C1D1 до каждой его грани, если диагональ
грани куба равна 6√2, а диагональ куба 6√3


Ответы на вопрос

Отвечает Трунова Эля.
Из формул диагоналей квадрата и куба мы знаем, что они равны корню квадратному из суммы квадратов сторон. => сторона куба равна 6 см. В кубе ребра перпендикулярны граням, а перпендикуляр - это кратчайшее расстояние меду точкой вне плоскости и плоскостью. Тогда расстояние от вершины А куба до противоположных этой вершине граней А1В1С1D1, ВВ1С1С и СС1D1D равно ребру куба, то есть = 6, а до граней АВСD, AA1B1B, AA1D1D равно 0, так как вершина А лежит в плоскостях этих граней.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili