Вопрос задан 16.05.2020 в 19:22. Предмет Геометрия. Спрашивает Рассадин Денис.

Радиус окружности описанной около правильного четырёхугольника равна 6√2 вычислите отношение

площади четырёхугольника к площади круга вписанного в данный четырёхугольник
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мецкер Ника.
Правильный четырехугольник - это квадрат. Радиус описанной окружности равен половине его диагонали, значит, диагональ квадрата равна 12√2. Известно, что сторона квадрата в √2 раз меньше его диагонали, значит, сторона равна 12. Площадь квадрата равна квадрату его стороны, то есть S=12²=144.

Диаметр вписанного в квадрат круга равен стороне квадрата, а радиус круга равен половине диаметра, значит, радиус равен 6. Площадь круга равна πR², то есть 36π. Отношение площади квадрата к площади круга, вписанного в него, равно 144/36π=4/π.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос