
Вопрос задан 08.05.2020 в 02:06.
Предмет Геометрия.
Спрашивает Аюшеева Раиса.
На окружности отмечены точки A и B так, что меньшая дуга AB равна 168°. Прямая BC касается
окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах


Ответы на вопрос

Отвечает Петров Никита.
Ответ: 84°
Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.
Объяснение:
Проведем диаметр ВК и соединим К и А. Треугольник ВАК прямоугольный ( угол КАВ опирается на диаметр). Сумма острых углов прямоугольного треугольника 90° =>
∠АКВ+∠КВА= 90°
Диаметр, проведенный в точку касания перпендикулярен касательной.
∠КВС°= ∠КВА+АВС=90°. Но и ∠ АКВ+∠КВА=90°. В сумме 90° имеется по равному слагаемому, следовательно, вторые слагаемые тоже равны. ⇒
УголАВС равен вписанному углу АКВ.
Вписанный угол равен половине градусной меры дуги, на которую опирается
∠АВС=∠АКВ=168°:2=84°


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili