
Вопрос задан 02.06.2018 в 23:27.
Предмет Геометрия.
Спрашивает Попова Мария.
В треугольнике ABC AB=BC. На медиане BE отмечена точка M, а на сторонах AB и BC- точки P и K
соответственно. (Точки P, M и K не лежат на одной прямой.) Известно, что угол BMP =угол BMK. Докажите, что:а) углы BPM и BKM равны;б) прямые PK и BM взаимно перпендикулярны

Ответы на вопрос

Отвечает Лященко Артём.
а) так как угол ВМР=ВМК, и АВ=ВС, тогда ВР=ВК. так как РВ=ВК, то точка М делит ВЕ пополам в отношении 1:2. из этого следует что угол РМВ=МКВ, а так как эти угла равны тогда и ВРМ=ВКМ. доказано
б) в треугольнике АВС, ВЕ медиана, высота и бессектриса. АЕ=ЕС, АВ=ВС, РК=1/2АЕ, тогда РК это серединный перпендикуляр проведённый к ВС, из этого следует что ВЕ перпендикулярно РК


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili