Вопрос задан 02.05.2020 в 23:54. Предмет Геометрия. Спрашивает Зузулина Даша.

Сформулируйте и докажите теорему, выражающую третий признак подобия треугольников.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бондарь Руслан.

Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Дано: ΔАВС, ΔА₁В₁С₁,

          \frac{AB}{A_{1}B_{1} } =\frac{AC}{A_{1}C_{1}}=\frac{BC}{B_{1}C_{1}}

Доказать: ΔАВС подобен ΔА₁В₁С₁.

Доказательство:

На стороне АС треугольника АВС отложим СА₂ = С₁А₁ и проведем А₂В₂║АВ.

Так как прямая, параллельная стороне треугольника, отсекает треугольник, подобный данному, то

ΔАВС подобен ΔА₂В₂С , значит их стороны пропорциональны:

\frac{AB}{A_{2}B_{2} } =\frac{AC}{A_{2}C}=\frac{BC}{B_{2}C}, а так как А₂С = А₁С₁, то получаем

\frac{AB}{A_{2}B_{2} } =\frac{AC}{A_{1}C_{1}}=\frac{BC}{B_{2}C},

По условию:

\frac{AB}{A_{1}B_{1} } =\frac{AC}{A_{1}C_{1}}=\frac{BC}{B_{1}C_{1}}.

Из этих двух равенств следует, что

А₂В₂ = А₁В₁ и В₂С = В₁С₁.

Тогда ΔА₁В₁С₁ = ΔА₂В₂С по трем сторонам.

Значит,

ΔАВС подобен ΔА₁В₁С₁.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос